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ABSTRACT
Precise ego-motion measurement is crucial for various applications,
including robotics, augmented reality, and autonomous navigation.
In this poster, we proposemmPhase, an odometry framework based
on single-chip millimetre-wave (mmWave) radar for robust ego-
motion estimation in mobile platforms without requiring additional
modalities like the visual, wheel, or inertial odometry. mmPhase
leverages a phase-based velocity estimation approach to overcome
the limitations of conventional doppler resolution. For real-world
evaluations of mmPhase we have developed an ego-vehicle proto-
type. Compared to the state-of-the-art baselines, mmPhase shows
superior performance in ego-velocity estimation.

CCS CONCEPTS
• Human-centered computing → Mobile devices.
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1 INTRODUCTION
Understanding themovement ofmobile agents, needed in autonomous
navigation or augmented reality settings, is crucial for perception
and interaction. Ego-motion estimation, unlike map-based localiza-
tion, doesn’t rely on prior knowledge of the environment. Instead,
it analyzes sensory data from the agent’s movement to determine
position and orientation over time. MEMS inertial sensors (IMUs)
are commonly used for ego-motion estimation on various mobile
platforms. However, their accuracy is limited by noise and bias, lead-
ing to significant drift. To overcome these limitations, multi-modal
odometry systems have been proposed, which combine inertial in-
formation with other modalities, like visual information. However,
the performance of Visual-Inertial Odometry (VIO) can degrade
in challenging lighting conditions. Similar visibility issues affect
LiDAR-Inertial Odometry (LIO), particularly when dealing with
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Figure 1: System overview of mmPhase

airborne obscurants like dust, fog, and smoke. LiDARs, while effec-
tive, are often bulky, heavy, and expensive compared to cameras,
making them cumbersome for micro-robots or wearable devices.

This poster proposes ego-motion estimation using Commercial-
Off-The-Shelf (COTS) mmWave radar to explore cost-effective al-
ternatives to optical systems such as LiDAR. mmWave modality
offers advantages over vision-based systems, particularly in robust-
ness to environmental conditions such as scene illumination and
airborne obscurants. Unlike LiDAR or mechanically scanning radar,
it uses electronic beamforming, making it lightweight and suitable
for micro-robots and mobile or wearable devices. Smartphones like
the Google Pixel 4 and commercial drones already use mmWave
radar for motion sensing and obstacle detection, making it a next
generation pervasive sensing solution.

The disadvantage of mmWave radar for indoor odometry lies in
its inherent sparse pointclouds with restricted angular resolution,
susceptibility to noise from specular reflections, and significant mul-
tipath effects. Also, the existing range-doppler-based approach has
limitations in velocity resolution as the minimum doppler resolu-
tion of these radars is approximately 3.41 cm/s [4], restricting their
ability to capture movements below this threshold. While some pre-
vious works [1, 3, 5] have employed multimodal approach by fusing
mmWave data with other sensors, such as IMUs and RGB cameras,
the potential of mmWave radar to complement these modalities
remains uncertain. Additionally, incorporating recent advances in
deep neural networks for visual or LiDAR odometry poses chal-
lenges due to heavy computational load, which may limit their use
in mobile, wearable, and other resource-constrained devices.

To address these challenges, we proposemmPhase, which utilizes
a phase-based velocity estimation method to overcome the inherent
limitations of conventional doppler resolution. This approach en-
ables us to achieve low latency on embedded platforms compared to
their DNN counterparts. We have developed a real-time prototype
implementation of mmPhase and conducted extensive real-world
evaluations with several baselines.
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Figure 2: (a) mmPhase setup, (b) phase variation over time

2 METHODOLOGY
Figure 1 summarizes the system overview of mmPhase. On the
collected raw mmWave ADC data, mmPhase first applies a range-
FFT and selects top𝑁 peaks to isolate the range bins where potential
reflectors are present. These𝑁 range peaks can vary over the frames
due to dynamic subject movement or due to multipath reflections.
Over the frames, it checks if the reflector range bin is consistent
(within ±3 range bins) to segregate the static reflectors from the
noisy range peaks. Then, it collects the corresponding phase values
from the selected range bins representing individual objects. Phase
unwrapping is done on the collected phase values to make the phase
values continuous.

The relation between the phase and the distance at which the
reflector is located can be given as 𝜙 = 4𝜋𝑑

𝜆
. Thus, phase has a

proportional relation to distance, as can be observed from Figure 2,
where we kept a single static object before the ego-vehicle and
collected the raw mmWave data. As shown in Figure 2(b), the phase
values decrease with time as the ego-vehicle moves towards the
static object. The velocity of the ego-vehicle (𝑣𝑏 ) for a static object
can be represented as 𝑑𝜙

𝑑𝑡
=

4𝜋𝑣𝑏
𝜆

. From the phase values collected
at a granularity (𝑑𝑡 ) of𝑇𝑐 (chirp time) +𝑇𝑝 (process time) = 86𝜇 secs,
we can estimate the relative velocity of the ego-vehicle (𝑣𝑏 ) from
the above relation. As the 𝜆 is in the millimetre range, a typical 𝑑𝜙
of around 0.057𝑜 can capture the velocity at a granularity of 1.23
cm/s [2] compared to standard doppler based approach which can
only work at a fixed doppler resolution (typically 3.41 cm/s).

3 EVALUATION AND CONCLUSION
In mmPhase setup, we use AWR1843BOOST EVM mmWave radar
connected to a DCA1000EVM for fast data collection (5 FPS) and
stored the data using a Jetson Nano mounted over the ego-vehicle.
For software, we use Texas Instruments’ mmWave Studio for radar
configuration and PlatformIO Arduino IDE for uploading firmware
to bot control. We collected the trajectory of our ego-vehicle us-
ing the Vicon Vero tracker (v1.3X). From the given trajectory, we
computed the ground truth velocity of our ego-vehicle.

We have compared ourmethodwith several baselines: (i) Doppler-
based approach, which computes Doppler-FFT on the raw ADC
data and estimates the velocity from the peak doppler bins, (ii)
IMU-based odometry using a MPU6050, mounted over the ego-
vehicle and (iii) Pre-trained milliEgo [5] model which fuses both
mmWave range-angle heatmaps along with IMU to predict position
and orientation. Our modified milliEgo returns the velocity directly
instead of the positional coordinates. As shown in Figure 3(a), the
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Figure 3: (a) MAE with respect to baselines, (b) Estimated
velocity w.r.t. doppler-based approach at lower velocities.

mean absolute error of our method is 4× lesser than its closest
baseline, i.e., the doppler-based approach. As the velocity of the
ego-vehicle increases, we have a higher error rate, primarily be-
cause at higher speeds, the phase component of the reflectors can
get more noisy, and applying doppler-FFT can adversely affect the
velocity estimation. Interestingly, IMU-based odometry exhibits su-
perior performance at higher speeds than lower ones. During each
data collection session covering the same distance, lower speeds
necessitate more time, thereby leading to time drift issues within
the IMU data. The pre-trained milliEgo performs the worst as it is
pre-trained in a different environment and suffers from both modal-
ities’ (IMU and mmWave) negative side. At velocities lower than
the doppler resolution, the closest baseline, i.e., the doppler-based
approach, suffers the most, as it’s unable to capture sub-doppler
movements accurately shown in Figure 3(b).

Unlike the existing methods, mmPhase relies solely on mmWave
raw phase data, overcoming not only the limitations such as sparse
point clouds and low-velocity resolutions but also offering low
latency, making it suitable for resource-constrained mobile or wear-
able devices. In future, we intend to validate it further by incorpo-
rating multiple static and dynamic objects, different occlusions, and
room settings. Also, we are considering a novel approach to ego-
velocity estimation using a physics-informed neural network [6].
The knowledge of general physical laws between phase and veloc-
ity can help train neural networks (NNs) as regularization agents.
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